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Evolution as a generic process

Darwin (1859)

Raup et al (1973)

I Darwin, Wallace, Lamarck : Evolution is a
generic process

I 1920-30’s First models of micro-evolution
(‘population genetics’)

I 1924–34 Haldane “Amathematical theory of natural and artif

selection”

I 1931 Wright “Evolution in Mendelian populations”

I 1937 Fisher “The wave of advance of advantageous genes”

I 1960-70’s First models of macro-evolution

I 1925 Yule “A mathematical theory of evolution, based on...”

I 1967 Cavalli-Sforza & Edwards

“Phylogenetic analysis : models and estimation procedures”

I 1973 Farris “A probability model for inferring evolutionary trees”

I 1973 Raup, Gould, Schopf & Simberlo�

“Stochastic models of phylogeny and the evolution of diversity”

I 1985 Felsenstein “Phylogenies and the comparative method”
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Introduction : genetic diversity, relatedness, genealogy

I Sample n individuals from a population and
sequence their DNA.

I Q. What diversity do you expect to observe
in this sample of DNA sequences?

I Mutations : mutation rate ↑, diversity ↑

I Genealogy : relatedness ↑, diversity ↓

I Each locus (gene, site) is inherited from one
single parent : simple gene genealogy

I Half of our genes come from our mother and
the other half from our father
⇒ Di�erent loci have di�erent genealogies

I In diploid species, each chromosome is in two
copies in each cell

I Each parent contributes one copy of each
chromosome : the 2 copies have 6= ancestries

I Even loci located on same chr don’t have the
same genealogy←− recombination

Amultiple sequence alignment

A pedigree= 2 parents ( 6= genealogy= 1 parent)
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Outline

I Models for the genealogy of one gene, coalescent
theory

I Patterns of genetic diversity at one locus, relation to
population size

I Models coupling genealogies of several genes

I Applications
I Q1. How does genome-wide diversity inform us on the

past demography?

I Q2. If the genome of each ancestor was painted in a
di�erent color, how would the mosaic of colors in the
pop look like in the long run?

Experimental evolution with C. elegans
16 colors, n = 300, N = 104
Teotónio, Estes, Phillips & Baer (2017)
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Neutral models of population genetics
Wright, Fisher, Cannings...

I The size of the population is constant, fixed equal to N� 1.

I Individual i of generation t has ν(t)i children∈ generation t + 1
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I Canningsmodel(s) : The vectors (ν(t)1 , ν
(t)
2 , . . . , ν

(t)
N )t∈Z are independent copies of a

vector (ν1, ν2, . . . , νN) such that

I ∑N
i=1 νi = N

I The law of (ν1, ν2, . . . , νN) is invariant by permutation (exchangeable)

I Wright–Fisher model : (ν1, . . . , νN) is multinomial with parameters (N; 1/N, . . . , 1/N)
⇔ Each ind in generation t+ 1 picks her parent uniformly and indep’ly in generation t
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The coalescent for two individuals

I Sample 2 individuals uniformly at random and follow their ancestors backwards in time

I Let TN(2) be the number of generations counted backwards until the two lineages find
theirmost recent common ancestor (MRCA)

I Then TN(2) is geometric with success probability cN := P( 2 random ind are sisters ).

I In the Wright–Fisher model, cN = 1/N, otherwise

cN = E

( N∑
i=1

νi(νi − 1)
N(N− 1)

)
=

E (ν1(ν1 − 1))
N− 1

I If cN → 0 as N→∞, then TN(2) = O(1/cN) and cNTN(2)→ T(2) ∼ E(1).
I Wright-Fisher : TN(2) = O(N) and TN(2)/N→ E(1).
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The coalescent for n individuals
Kingman, Gri�iths, Möhle...

I Sample n individuals uniformly at random and follow their ancestors backwards in time
I Recall cN = P( 2 random ind are sisters ) and set dN := P( 3 random ind are sisters ), so

that dN = 1/N2 in the WFmodel.

Theorem (Möhle’s lemma)
As N→∞, under the assumption that dN/cN → 0, the genealogy of the sample t/cN units of
time ago, converges to Kingman’s coalescent :
1. The waiting time T(k) from k to k − 1 lineages is exponential with parameter

(k
2

)
2. The next coalescing pair is chosen uniformly at random.

I ⇔ “Each pair of lineages coalesces independently at rate 1”...
I ...Or at rate 1/x(t), if pop size= Nx(Nt)
I Nomultiple mergers. Shorter edge lengths close to present. Sampling-consistent.
I The genealogy of n also has length= O(N).

Note : The coalescent at time t is
represented by the partition of
{1, . . . , n} induced by the relation
i ∼t j if i and j have found their
common ancestor t time units ago

10



Large sample limit 1� n� N

0
-
t

?

6

Kingman’s coalescent
comes down from∞ (CDI)

I The process counting the number of
lineages in Kingman’s coalescent is a
pure-death process going from k to
k − 1 at rate

(k
2

)
I The sojourn time Tk in state k has

expectationE(Tk) =
(k
2

)−1
so

E

∑
k≥2

Tk

 =
∑
k≥2

E(Tk) <∞,

so
∑

k≥2 Tk <∞with probability 1.

I There is a unique entrance law
P∞ =: standard coalescent.
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Genealogy of a sample with mutations
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Haplotype of individual 3

Haplotype of individual 6

I Mutations are visible if present in k ∈ {1, . . . , n− 1} =: polymorphic/segregating site
⇒ Visible mutations occur within the genealogical tree, with length= O(N)

I Goldilocks zone for proba uN of gene-widemutation at birth :
I If NuN � 1, no segregating site in sample
I If NuN � 1, infinitely many segregating sites in sample
I If NuN = O(1), finite number of mutations (Poisson cond on tree length)

I If NuN = O(1) and sequence long enough : mutations all occur at di�erent sites
= infinitely-many-site model

⇒ Eachmutation gives rise to a new haplotype= infinitely-many-allele model
13



Assumptions and notation

I Population size N,mutation proba uN ∼ θ/2N (recall Goldilocks zone : NuN = O(1))

I As N→∞, convergence to Kingman’s coalescentwith Poissonianmarks rate θ/2

I Sn := # polymorphic sites=
∑

k Sn(k), where

I Sn(k) := # polymorphic sites carried by k ind (in sample of n)
=: Site Frequency Spectrum (SFS), 1 ≤ k ≤ n− 1.

Note : Conditional on total tree length Ln, Sn is Poisson with parameter θLn/2.

I An := # distinct haplotypes=
∑

k An(k), where

I An(k) := # haplotypes carried by k ind (in sample of n)
=: Allele Frequency Spectrum (AFS), 1 ≤ k ≤ n.

Note : Haplotypes induce the so-called allelic partition of the sample, so∑
k

kAn(k) = n

14



Law of the allelic partition : Ewens’ Sampling Formula

Time reversal argument :
Coalescent (pairwise rate 1) w deaths (rate θ/2)
⇔ Birth process (rate 1) with immigration (rate θ)
⇔ Chinese restaurant process
=when (k + 1)-st customer enters the dining room,
I She sits next to customer iwith proba 1/(k + θ),

I Or she sits at an empty table with proba θ/(k + θ).

Theorem (Ewens 1972)
For any vector (a1, . . . , an) st

∑n
k=1 kak = n,

P(An(1) = a1, . . . , An(n) = an) = cθ,n
n∏
k=1

(
θ
k

)ak
ak!

where cθ,n := n! / [θ(θ + 1) · · · (θ + n− 1)].

⇔ (An(1), . . . , An(n))
(d)
= (Y1, . . . , Yn |

∑n
k=1 kYk = n) :

I Yk ’s are independent

I Yk is a Poisson r.v. with parameter θ/k.

 

    

 

 
 

 

n−coalescent with Poissonian mutations,
each sampled haplotype has its own color 15



Large sample limit 1� n� N
Ewens, Donnelly & Tavaré...

I As n→∞,
Sn ∼ θ ln(n) and An ∼ θ ln(n),

with convergence rate
√

ln(n).

I Small families (fixed k).

lim
n→∞

An(k)
(d)
= Yk,

where Yk denotes a Poisson r.v. with parameter θ/k.

I Large families.
Set Xn(i) := size of i-th oldest family.
As n→∞,

(
n−1Xn(k)

)
k≥1 converges (fdd) to the GEM vector (Pk)k≥1 defined as

Pk := Zk
k−1∏
i=1

(1− Zi),

where the (Zi) are i.i.d. with density θ(1− z)θ−1 (Beta (1, θ)).

 1

Oldest

0

2nd oldest 3rd oldest ...
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Estimating population size

I Pop size ↑, relatedness ↓, diversity ↑

I If mutation proba uN known, then any estimator of θ = 2NuN yields an estimate of N.
For example θ can be estimated by Sn/ ln(n) (Watterson 1975)

I Genealogy (predicts)(can be inferred from) genetic diversity.
For n = 2, P( identity ) := Homozygosity h= (1− uN)2TN(2) ≈ exp(−θT(2)))

I Assume N constant. If the value of TN(2) can be estimated from diversity,
then 1/TN(2) = estimator of N

I If pop size not constant, N(t) = Nx(Nt), then

P(TN(2)/N > t) −→ exp

{
−
∫ t

0

ds
x(s)

}
I Recall that di�erent genes have di�erent genealogies — in theory, if the distribution of

TN(2) could be estimated from diversity at many ‘independent’ loci, the variations of N
through time could be inferred!!

I Requires understanding how genealogies of di�erent genes are coupled...
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The example of a bottleneck

A provisional reduction in population size, or bottleneck

Densities of coalescence times peak at a bottleneck time
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Wright–Fisher model with recombination

I Constant pop size N, but now : TWO parents per ind

I Each ind carries one chromosome= interval [0, 1]

I At each generation, each individual chooses her two
parents uniformly at random

I The two parental chromosomes recombine with
probability ρ/N

I ...as a single, uniformly distributed cross-over

I Otherwise, only one of the two chromosomes is
passed on.

(1-rho/N)/2

rho/N

(1-rho/N)/2
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Ancestral Recombination Graph : 2 sites, n = 1
Grifiths & Marjoram, Wiuf & Hein, Jenkins & Song...

I Sample n = 1 individual

I Consider two sites x and y at distance ` and follow
their ancestry as time goes backward

I At each generation, the common line of descent {x, y}
splits with probability ρ`/N

I At each generation, the singleton lines {x} and {y}
coalesce with probability 1/N

I As N→∞, the time-rescaled ARG splits at rate ρ`
andmerges at rate 1.

21



The Ancestral Recombination Graph : 3 sites, n = 1

I Sample n = 1 individual

I Consider three sites {x, y, z} at distances `1 and `2

I In the limit N→∞, the block {x, y, z}
I splits into {x, y} and {z} at rate ρ`2
I splits into {x} and {y, z} at rate ρ`1

I Block {x, y}..., block {y, z}..., block {x, z}...

I Each pair of lines coalesces at rate 1.

Note : When n = 1, the ARG on k loci can be generated by a
Markov process valued in the partitions of {1, . . . , k}.

22



The Ancestral Recombination Graph : 3 loci, n = 2

I Now sample n = 2 individuals

I Now same color-lines can additionally coalesce

I Observe that green and blue loci have the same time
to MRCA, 6= red locus.

I Moving along the chromosome, we see a sequence of
trees (n = 2 : a sequence of cherries)...

I IBD segment (“identical by descent”) :=maximal
connected segment of sites sharing the same
genealogy.
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Tree sequence

picture by Guillaume Achaz

Shallow trees are carried by a longer IBD segment
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Sequentially Markovian Coalescent (SMC)
McVean & Cardin, Li & Durbin, Schi�els & Durbin...

I ARG : complex dependencies betw gene trees

I SMC :=Markovian approximation to the ARG,
as wemove along chromosome

I Starting from gene tree with length L...

I Wait an exponential ‘distance’ with param ρL...

I Detach lineage at a uniform point and regra� it
coalescent-like...

I Li & Durbin (Nature 2011) : the tour de force of
inferring the (pop size) history of human pop
by sequencing one individual= one diploid
genome= TWO sequences

I PSMC= Pairwise SMC:= infer past variations of
population size from one diploid genome by
HMM, where hidden state= TMRCA

I Shallow tree= Long segment, low density of
heterozygous sites

I Deep tree= Short segment, high density of
heterozygous sites

McVean & Cardin (2005)

Li & Durbin (2011)
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Inference of demographic history of human ancestry by PSMC
Generation time= 25 years, mutation proba u = 2.5× 10−8 per generation per bp

Li & Durbin (2011)

I Severe bottleneck 10–60 kyr ago
I Di�erentiation of genetically modern humans starting as early as 100–120 kyr ago
I Elevated pop size betw 60 and 250 kyr ago, possible artefact due to pop substructure

(involving small, separately evolving isolated pops).
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A quantitative assessment of extinction risk
Kerdoncu�, Lambert & Achaz, “Testing for population decline using maximal linkage disequilibrium blocks” TPB 2020

I Goal : detect decline κN0 → N0, τN0 generations ago

I Maximum LD block=maximal segment with
mutations compatible with a single tree

I Normalized distribution of MLD block lengths
insensitive to pop size, sensitive to pop size variations

I Example. Power> 50% for n = 10 and a smooth,
recent decline (κ = 2,τ = 0.05).

I Requires good quality sequences. Sensitive to
population structure.

n = 10,κ = 3

n = 10,κ = 2 or 10
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Chromosome painting

I Recall Wright–Fisher model with pop size N, recombination prob ρ/N (here ρ = R)

I Chromosome= interval [0, R]

I Start with N ind and paint each of these N initial sequences with a di�erent color.

I A�er some fixed amount of time, pick one individual at random : how does the mosaic
of colors on this chromosome look like?

I When time is su�iciently large, all individuals carry the same fixed chromosome : How
does the fixed mosaic look like?

picture by Verónica Miró Pina
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The Ancestral Recombination Graph – cont’d

I Recall that when n = 1, the ARG can be described by a
partition of [0, R], induced by the relation of common
ancestry

I Initial state : coarse partition

I The fixed mosaic is given by the stationary distribution
of this partitioning process
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The partitioning process
Esser, Probst & Baake, Lambert, Miró Pina & Schertzer

Recall recombinations fall at rate 1 per unit time, per unit length.

I Each cluster (here, blue)
independently splits into
two at rate equal to its
diameter at a point
uniformly distributed in its
convex hull

I Each pair of clusters (here,
red and green)
independently coalesces at
rate 1

31



Zooming out logarithmically on the fixed mosaic
Lambert, Miró Pina & Schertzer “Chromosome painting : how recombination mixes ancestral colors” Ann Appl Prob (2020)

I Recall 0 ∼ x, if x carries same color as le�
extremity of chromosome (say, red)

I Define length of cluster containing 0

LR :=

∫ R

0
10∼x dx

and for 0 ≤ a ≤ b ≤ 1,

ϑR([a, b]) :=
1

log(R)

∫ Rb

Ra
10∼x dx

Theorem (L., Miró Pina & Schertzer 2020)
As R→∞,

I LR/ log(R)→ E(1)

I ϑR →
∑

i yiδxi where (xi, yi) are the atoms of a
PPP with intensity x−2e−y/xdx dy.

In the logarithmic scale, the segments IBD with 0 are
distributed according to the scale-invariant PPP (intensity
x−1dx) and the length of segment at Rx is exponential with
mean x log(R).

Insert shows complex geometry of these segments at finer
scale not described in the Theorem.
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Number of ancestors contributing to today’s genomes

Theorem (L., Miró Pina & Schertzer 2020)
Let ε > 0 and let Mε(R) = number of clusters in [0, R]with length larger than ε ln(R). Then

lim
ε→0

lim
R→∞

ln(R)
R

Mε(R) = 1 in probability.

Conjecture (Wiuf and Hein 1997)
There exists a constant c ≈ 1.38 such that

lim
R→∞

ln(R)
R

M(R) = c (in law, a.s.?)
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